|
Functions |
template<class M1, class T, class M2, class M3> M1 & | boost::numeric::ublas::blas_3::tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3) |
| triangular matrix multiplication
|
template<class M1, class T, class M2, class C> M1 & | boost::numeric::ublas::blas_3::tsm (M1 &m1, const T &t, const M2 &m2, C) |
| triangular solve m2 * x = t * m1 in place, m2 is a triangular matrix
|
template<class M1, class T1, class T2, class M2, class M3> M1 & | boost::numeric::ublas::blas_3::gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) |
| general matrix multiplication
|
template<class M1, class T1, class T2, class M2> M1 & | boost::numeric::ublas::blas_3::srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) |
| symmetric rank k update: m1 = t * m1 + t2 * (m2 * m2T)
|
template<class M1, class T1, class T2, class M2> M1 & | boost::numeric::ublas::blas_3::hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) |
| hermitian rank k update: m1 = t * m1 + t2 * (m2 * m2H)
|
template<class M1, class T1, class T2, class M2, class M3> M1 & | boost::numeric::ublas::blas_3::sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) |
| generalized symmetric rank k update: m1 = t1 * m1 + t2 * (m2 * m3T) + t2 * (m3 * m2T)
|
template<class M1, class T1, class T2, class M2, class M3> M1 & | boost::numeric::ublas::blas_3::hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) |
| generalized hermitian rank k update: m1 = t1 * m1 + t2 * (m2 * m3H) + (m3 * (t2 * m2)H)
|
template<class M, class E1, class E2> BOOST_UBLAS_INLINE M & | boost::numeric::ublas::axpy_prod (const matrix_expression< E1 > &e1, const matrix_expression< E2 > &e2, M &m, bool init=true) |
| computes M += A X or M = A X in an optimized fashion.
|
template<class M, class E1, class E2> BOOST_UBLAS_INLINE M & | boost::numeric::ublas::opb_prod (const matrix_expression< E1 > &e1, const matrix_expression< E2 > &e2, M &m, bool init=true) |
| computes M += A X or M = A X in an optimized fashion.
|
Copyright (©) 2000-2004 Michael Stevens, Mathias Koch,
Joerg Walter, Gunter Winkler
Use, modification and distribution are subject to the
Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt
or copy at
http://www.boost.org/LICENSE_1_0.txt).