Home | Libraries | People | FAQ | More |
A B C D E F G H I K L M N O P Q R S T U V W Z
acosh
acoshf
acoshl
Advancing a Floating Point Value by a Specific Representation Distance (ULP) float_advance
asinh
asinhf
asinhl
assert_undefined_type
assoc_laguerre
assoc_laguerref
assoc_laguerrel
assoc_legendre
assoc_legendref
assoc_legendrel
atanh
atanhf
atanhl
bernoulli
Bernoulli Distribution
Bessel Functions of the First and Second Kinds
Beta
beta
Beta Distribution
betac
betaf
betal
binomial
Binomial Coefficients
Binomial Distribution
binomial_coefficient
Boost.Math Macros
Boost.Math Tuning
BOOST_DEFINE_MATH_CONSTANT
BOOST_FPU_EXCEPTION_GUARD
BOOST_HAS_LOG1P
BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_NON_TYPE_SPEC
BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC
BOOST_MATH_ASSERT_UNDEFINED_POLICY
BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
BOOST_MATH_CONTROL_FP
BOOST_MATH_DECLARE_DISTRIBUTIONS
BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS
BOOST_MATH_DENORM_ERROR_POLICY
BOOST_MATH_DIGITS10_POLICY
BOOST_MATH_DISCRETE_QUANTILE_POLICY
BOOST_MATH_DOMAIN_ERROR_POLICY
BOOST_MATH_EVALUATION_ERROR_POLICY
BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE
BOOST_MATH_EXPLICIT_TEMPLATE_TYPE
BOOST_MATH_INDETERMINATE_RESULT_ERROR_POLICY
BOOST_MATH_INSTRUMENT_CODE
BOOST_MATH_INSTRUMENT_FPU
BOOST_MATH_INSTRUMENT_VARIABLE
BOOST_MATH_INT_TABLE_TYPE
BOOST_MATH_INT_VALUE_SUFFIX
BOOST_MATH_MAX_POLY_ORDER
BOOST_MATH_MAX_ROOT_ITERATION_POLICY
BOOST_MATH_MAX_SERIES_ITERATION_POLICY
BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS
BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
BOOST_MATH_NO_REAL_CONCEPT_TESTS
BOOST_MATH_OVERFLOW_ERROR_POLICY
BOOST_MATH_POLE_ERROR_POLICY
BOOST_MATH_POLY_METHOD
BOOST_MATH_PROMOTE_DOUBLE_POLICY
BOOST_MATH_PROMOTE_FLOAT_POLICY
BOOST_MATH_RATIONAL_METHOD
BOOST_MATH_ROUNDING_ERROR_POLICY
BOOST_MATH_SMALL_CONSTANT
BOOST_MATH_STD_USING
BOOST_MATH_UNDERFLOW_ERROR_POLICY
BOOST_MATH_USE_C99
brent_find_minima
C99 and C++ TR1 C-style Functions
C99 and TR1 C Functions Overview
C99 C Functions
Calling User Defined Error Handlers
cauchy
Cauchy-Lorentz Distribution
cauchy_distribution
cbrt
cbrtf
cbrtl
cdf
changesign
Changing the Policy Defaults
Changing the Policy on an Ad Hoc Basis for the Special Functions
checked_narrowing_cast
chf
Chi Squared Distribution
chi_squared
Compile Time Power of a Runtime Base
Compilers
Complements are supported too - and when to use them
comp_ellint_1
comp_ellint_1f
comp_ellint_1l
comp_ellint_2
comp_ellint_2f
comp_ellint_2l
comp_ellint_3
comp_ellint_3f
comp_ellint_3l
Conceptual Requirements for Distribution Types
Conceptual Requirements for Real Number Types
confidence intervals on the mean with the Students-t distribution
conf_hyperg
conf_hypergf
conf_hypergl
Continued Fraction Evaluation
continued_fraction_a
continued_fraction_b
copysign
copysignf
copysignl
cyl_bessel_i
cyl_bessel_if
cyl_bessel_il
cyl_bessel_j
cyl_bessel_jf
cyl_bessel_jl
cyl_bessel_k
cyl_bessel_kf
cyl_bessel_kl
cyl_neumann
cyl_neumannf
cyl_neumannl
default_policy
denorm_error_type
Derivative of the Incomplete Beta Function
Derivative of the Incomplete Gamma Function
Digamma
Discrete Quantile Policies
discrete_quantile_type
Distribution Algorithms
domain_error_type
double_t
e
ellint_1
ellint_1f
ellint_1l
ellint_2
ellint_2f
ellint_2l
ellint_3
ellint_3f
ellint_3l
ellint_rc
ellint_rd
ellint_rf
ellint_rj
Elliptic Integrals - Carlson Form
Elliptic Integrals of the First Kind - Legendre Form
Elliptic Integrals of the Second Kind - Legendre Form
Elliptic Integrals of the Third Kind - Legendre Form
epsilon
eps_tolerance
equal_ceil
equal_floor
equal_nearest_integer
erf
erfc
erfcf
erfcl
erfc_inv
erff
erfl
erf_inv
Error Function Inverses
Error Functions
Error Handling
Error Handling Policies
Errors In the Function beta(a, b, x)
Errors In the Function betac(a,b,x)
Errors In the Function erf(z)
Errors In the Function erfc(z)
Errors In the Function expint(n, z)
Errors In the Function expint(z)
Errors In the Function gamma_p(a,z)
Errors In the Function gamma_q(a,z)
Errors In the Function ibeta(a,b,x)
Errors In the Function ibetac(a,b,x)
Errors In the Function tgamma(a,z)
Errors In the Function tgamma_delta_ratio(a, delta)
Errors In the Function tgamma_lower(a,z)
Errors In the Function tgamma_ratio(a, b)
Errors In the Function zeta(z)
evaluate_even_polynomial
evaluate_odd_polynomial
evaluate_polynomial
evaluate_rational
evaluation_error_type
Examples
exp2
exp2f
exp2l
expint
expintf
expintl
expm1
expm1f
expm1l
exponential
Exponential Distribution
Exponential Integral Ei
Exponential Integral En
Extras/Future Directions
Extreme Value Distribution
extreme_value
e_float
e_float Support
F Distribution
Facets for Floating-Point Infinities and NaNs
Factorial
fdim
fdimf
fdiml
Finding the Next Greater Representable Value (float_next)
Finding the Next Representable Value in a Specific Direction (nextafter)
Finding the Next Smaller Representable Value (float_prior)
find_beta
find_degrees_of_freedom
find_location
find_lower_bound_on_p
find_non_centrality
find_scale
find_upper_bound_on_p
fisher_f
fisher_f_distribution
Floating-Point Classification: Infinities and NaNs
float_advance
float_distance
float_next
float_prior
float_t
fma
fmaf
fmal
fmax
fmaxf
fmaxl
fmin
fminf
fminl
fpclassify
FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO
Gamma
gamma
Gamma (and Erlang) Distribution
gamma_distribution
gamma_p
gamma_p_derivative
gamma_p_inv
gamma_p_inva
gamma_q
gamma_q_inv
gamma_q_inva
Generic operations common to all distributions are non-member functions
geometric
Geometric Distribution
get_user_parameter_info
Graphing, Profiling, and Generating Test Data for Special Functions
halley_iterate
hazard
hermite
Hermite Polynomials
hermitef
hermitel
hermite_next
History and What's New
hyperg
hypergeometric
Hypergeometric Distribution
hypergf
hypergl
hypot
hypotf
hypotl
ibeta
ibetac
ibetac_inv
ibetac_inva
ibetac_invb
ibeta_derivative
ibeta_inv
ibeta_inva
ibeta_invb
ilogb
ilogbf
ilogbl
Implementation Notes
Incomplete Beta Function Inverses
Incomplete Beta Functions
Incomplete Gamma Function Inverses
Incomplete Gamma Functions
indeterminate_result_error_type
infinity
insert
Introduction
Inverse Chi Squared Distribution
Inverse Gamma Distribution
Inverse Gaussian (or Inverse Normal) Distribution
inverse_chi_squared
inverse_gaussian
inverse_gaussian_distribution
iround
isfinite
isinf
isnan
isnormal
Iteration Limits Policies
itrunc
kahan_sum_series
Known Issues, and TODO List
kurtosis
kurtosis_excess
laguerre
Laguerre (and Associated) Polynomials
laguerref
laguerrel
laguerre_next
Lanczos approximation
laplace
Laplace Distribution
ldexp
legendre
Legendre (and Associated) Polynomials
legendref
legendrel
legendre_next
legendre_p
legendre_q
lgamma
lgammaf
lgammal
llrint
llrintf
llrintl
llround
llroundf
llroundl
lltrunc
Locating Function Minima: Brent's algorithm
Log Gamma
Log Normal Distribution
log1p
log1pf
log1pl
log1p_series
log2
log2f
log2l
logb
logbf
logbl
logistic
Logistic Distribution
lognormal
lognormal_distribution
lrint
lrintf
lrintl
lround
lroundf
lroundl
ltrunc
make_periodic_param
make_policy
make_power_param
make_random_param
Mathematically Undefined Function Policies
max_factorial
mean
median
mode
Modified Bessel Functions of the First and Second Kinds
msg
Namespaces
nan
nanf
nanl
nearbyint
nearbyintf
nearbyintl
Negative Binomial Distribution
negative_binomial
newton_raphson_iterate
nextafter
nextafterf
nextafterl
nexttoward
nexttowardf
nexttowardl
Non-Member Properties
Noncentral Beta Distribution
Noncentral Chi-Squared Distribution
Noncentral F Distribution
Noncentral T Distribution
nonfinite_num_get
nonfinite_num_put
non_central_beta
non_central_beta_distribution
non_central_chi_squared
non_central_chi_squared_distribution
non_central_f
non_central_f_distribution
non_central_t
non_central_t_distribution
norm
normal
Normal (Gaussian) Distribution
normalise
normal_distribution
Numeric Constants
overflow_error_type
pareto
Pareto Distribution
Performance Tuning Macros
poisson
Poisson Distribution
pole_error_type
Policy Class Reference
policy_type
Polynomial and Rational Function Evaluation
Polynomials
precision_type
promote_args
promote_double_type
promote_float_type
r
range
Ratios of Gamma Functions
rayleigh
Rayleigh Distribution
Reference
References
Relative Error and Testing
relative_error
remainder
remainderf
remainderl
remquo
remquof
remquol
Representation Distance Between Two Floating Point Values (ULP) float_distance
Riemann Zeta Function
riemann_zeta
riemann_zetaf
riemann_zetal
rint
rintf
rintl
Root Finding With Derivatives: Newton-Raphson, Halley & Schroeder
Root Finding Without Derivatives: Bisection, Bracket and TOMS748
round
roundf
Rounding Functions
rounding_error_type
roundl
RR
scalbln
scalblnf
scalblnl
scalbn
scalbnf
scalbnl
scale
schroeder_iterate
Series Evaluation
Setting Polices at Namespace Scope
Setting Policies at Namespace or Translation Unit Scope
Setting Policies for Distributions on an Ad Hoc Basis
shape
sign
Sign Manipulation Functions
signbit
skewness
Spherical Bessel Functions of the First and Second Kinds
Spherical Harmonics
spherical_harmonic
spherical_harmonic_i
spherical_harmonic_r
sph_bessel
sph_besself
sph_bessell
sph_legendre
sph_legendref
sph_legendrel
sph_neumann
sph_neumannf
sph_neumannl
standard_deviation
Students t Distribution
students_t
sum_series
Supported/Tested Compilers
t
test
test_data
tgamma
tgamma1pm1
tgammaf
tgammal
tgamma_delta_ratio
tgamma_lower
tgamma_ratio
tol
TR1 C Functions Quick Reference
triangular
Triangular Distribution
triangular_distribution
trunc
Truncation Functions
truncf
truncl
underflow_error_type
uniform
Uniform Distribution
upper_incomplete_gamma_fract
user_denorm_error
user_domain_error
user_evaluation_error
user_indeterminate_result_error
user_overflow_error
user_pole_error
user_rounding_error
user_underflow_error
Using Macros to Change the Policy Defaults
Using With MPFR / GMP - a High-Precision Floating-Point Library
Using With NTL - a High-Precision Floating-Point Library
weibull
Weibull Distribution
write_code
write_csv