Home | Libraries | People | FAQ | More |
#include <boost/tr1/functional.hpp>
or
#include <functional>
The Ref library is a small library that is useful for passing references
to function templates (algorithms) that would usually take copies of their
arguments. It defines the class template reference_wrapper<T>
,
and the two functions ref
and cref
that return instances
of reference_wrapper<T>
.
Refer to Boost.Bind for more information.
namespace std { namespace tr1 { template <class T> class reference_wrapper; template <class T> reference_wrapper<T> ref(T&); template <class T> reference_wrapper<const T> cref(const T&); template <class T> reference_wrapper<T> ref(reference_wrapper<T>); template <class T> reference_wrapper<const T> cref(reference_wrapper<T>); } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_REFERENCE_WRAPPER if your standard library implements this part of TR1.
Standard Conformity: The Boost version of this this component does not currently support function call invocation (2.1.2.4), or derivation from std::unary_function or std::binary_function (2.1.2 paragraphs 3 and 4).
The Boost version is not implicitly convertible to T& as the TR requires.
#include <boost/tr1/memory.hpp>
or
#include <memory>
The shared_ptr
class template
stores a pointer to a dynamically allocated object, typically with a C++
new-expression. The object pointed to is guaranteed to be deleted when the
last shared_ptr
pointing
to it is destroyed or reset. For more information refer to the shared_ptr
and weak_ptr documentation.
namespace std { namespace tr1 { class bad_weak_ptr; // [2.2.3] Class template shared_ptr template<class T> class shared_ptr; // [2.2.3.6] shared_ptr comparisons template<class T, class U> bool operator==(shared_ptr<T> const& a, shared_ptr<U> const& b); template<class T, class U> bool operator!=(shared_ptr<T> const& a, shared_ptr<U> const& b); template<class T, class U> bool operator<(shared_ptr<T> const& a, shared_ptr<U> const& b); // [2.2.3.8] shared_ptr specialized algorithms template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b); // [2.2.3.9] shared_ptr casts template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r); template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r); template<class T, class U> shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r); // [2.2.3.7] shared_ptr I/O template<class E, class T, class Y> basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, shared_ptr<Y> const& p); // [2.2.3.10] shared_ptr get_deleter template<class D, class T> D * get_deleter(shared_ptr<T> const& p); // [2.2.4] Class template weak_ptr template<class T> class weak_ptr; // [2.2.4.6] weak_ptr comparison template<class T, class U> bool operator<(weak_ptr<T> const& a, weak_ptr<U> const& b); // [2.2.4.7] weak_ptr specialized algorithms template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b); // [2.2.5] Class enable_shared_from_this template<class T> class enable_shared_from_this; } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_SHARED_PTR if your standard library implements this part of TR1.
Standard Conformity: There are no known deviations from the standard when using the Boost version of this component.
#include <boost/tr1/functional.hpp>
or
#include <functional>
The class template result_of
helps determine the type of a call expression. Given an lvalue f
of type F
and lvalues t1
, t2, ...,
tN
of types T1, T2,
..., TN
,
respectively, the type result_of<F(T1, T2, ..., TN)>::type
defines the result type of the expression f(t1,
t2, ...,tN)
. The implementation permits the type F
to be a function pointer, function reference,
member function pointer, or class type. For more information refer
to the Boost.Utility documentation.
namespace std { namespace tr1 { template <class T> struct result_of { typedef unspecified type; }; } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_RESULT_OF if your standard library implements this part of TR1.
Standard Conformity: No known problems.
#include <boost/tr1/functional.hpp>
or
#include <functional>
std::tr1::mem_fn
is a generalization of the standard functions std::mem_fun
and std::mem_fun_ref
. It supports member function
pointers with more than one argument, and the returned function object can
take a pointer, a reference, or a smart pointer to an object instance as
its first argument. mem_fn
also supports pointers to data members by treating them as functions taking
no arguments and returning a (const) reference to the member. For more information
refer to the Boost.Mem_fn documentation.
namespace std { namespace tr1 { template <class R, class T> unspecified mem_fn(R T::* pm); } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_MEM_FN if your standard library implements this part of TR1.
Standard Conformity: The Boost implementation
does not produce functors that inherit from std::unary_function
or std::binary_function
, nor does it function correctly
with pointers to volatile member functions (these should be extremely rare
in practice however).
#include <boost/tr1/functional.hpp>
or
#include <functional>
std::tr1::bind
is a generalization of the standard functions std::bind1st
and std::bind2nd
. It supports arbitrary function
objects, functions, function pointers, and member function pointers, and
is able to bind any argument to a specific value or route input arguments
into arbitrary positions. bind
does not place any requirements on the function object; in particular, it
does not need the result_type
,
first_argument_type
and
second_argument_type
standard
typedefs. For more information refer to the Boost.Bind
documentation.
namespace std { namespace tr1 { // [3.6] Function object binders template<class T> struct is_bind_expression; template<class T> struct is_placeholder; template<class F, class T1, ..., class Tn > unspecified bind(F f, T1 t1, ..., Tn tn ); template<class R, class F, class T1, ..., class Tn > unspecified bind(F f, T1 t1, ..., Tn tn ); namespace placeholders { // M is the implementation-defined number of placeholders extern unspecified _1; extern unspecified _2; . . . extern unspecified _M; } } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_BIND if your standard library implements this part of TR1.
Standard Conformity: The traits classes
is_placeholder
and is_bind_expression
are not supported by
the Boost implementation.
The named return value syntax isn't supported if the object being bound is a function pointer, for example:
std::tr1::bind(&my_proc, arg1, arg2 /* etc */); // works OK. std::tr1::bind<double>(&my_proc, arg1, arg2 /* etc */); // causes compiler error. std::tr1::bind<double>(my_function_object, arg1, arg2 /* etc */); // works OK.
On the other hand, the Boost implementation does work with pointers to overloaded functions, and optionally with function pointers with non-standard calling conventions.
#include <boost/tr1/functional.hpp>
or
#include <functional>
The polymorphic function wrappers are a family of class templates that may be used as a generalized callback mechanism. A polymorphic function wrapper shares features with function pointers, in that both define a call interface (for example a function taking two integer arguments and returning a floating-point value) through which some arbitrary code may be called. However a polymorphic function wrapper can call any callable object with a compatible call signature, this could be a function pointer, or it could be a function object produced by std::tr1::bind, or some other mechanism. For more information see the Boost.Function documentation.
namespace std { namespace tr1 { // [3.7] polymorphic function wrappers class bad_function_call; template<class Function> class function; template<class Function> void swap(function<Function>&, function<Function>&); template<class Function1, class Function2> void operator==(const function<Function1>&, const function<Function2>&); template<class Function1, class Function2> void operator!=(const function<Function1>&, const function<Function2>&); template <class Function> bool operator==(const function<Function>&, unspecified-null-pointer-type ); template <class Function> bool operator==(unspecified-null-pointer-type , const function<Function>&); template <class Function> bool operator!=(const function<Function>&, unspecified-null-pointer-type ); template <class Function> bool operator!=(unspecified-null-pointer-type , const function<Function>&); } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_FUNCTION if your standard library implements this part of TR1.
Standard Conformity: The Boost version of
std::tr1::function
lacks the member function target_type()
and does not inherit from std::unary_function
or std::binary_function
when applicable. The member
function target() can only access pointer-to-member targets when they have
been wrapped in mem_fn.
#include <boost/tr1/type_traits.hpp>
or
#include <type_traits>
Type traits enable generic code to access the fundamental properties of a type, to determine the relationship between two types, or to transform one type into another related type. For more information refer to the Boost.Type_traits documentation.
namespace std { namespace tr1 { template <class T, T v> struct integral_constant; typedef integral_constant<bool, true> true_type; typedef integral_constant<bool, false> false_type; // [4.5.1] primary type categories: template <class T> struct is_void; template <class T> struct is_integral; template <class T> struct is_floating_point; template <class T> struct is_array; template <class T> struct is_pointer; template <class T> struct is_reference; template <class T> struct is_member_object_pointer; template <class T> struct is_member_function_pointer; template <class T> struct is_enum; template <class T> struct is_union; template <class T> struct is_class; template <class T> struct is_function; // [4.5.2] composite type categories: template <class T> struct is_arithmetic; template <class T> struct is_fundamental; template <class T> struct is_object; template <class T> struct is_scalar; template <class T> struct is_compound; template <class T> struct is_member_pointer; // [4.5.3] type properties: template <class T> struct is_const; template <class T> struct is_volatile; template <class T> struct is_pod; template <class T> struct is_empty; template <class T> struct is_polymorphic; template <class T> struct is_abstract; template <class T> struct has_trivial_constructor; template <class T> struct has_trivial_copy; template <class T> struct has_trivial_assign; template <class T> struct has_trivial_destructor; template <class T> struct has_nothrow_constructor; template <class T> struct has_nothrow_copy; template <class T> struct has_nothrow_assign; template <class T> struct has_virtual_destructor; template <class T> struct is_signed; template <class T> struct is_unsigned; template <class T> struct alignment_of; template <class T> struct rank; template <class T, unsigned I = 0> struct extent; // [4.6] type relations: template <class T, class U> struct is_same; template <class Base, class Derived> struct is_base_of; template <class From, class To> struct is_convertible; // [4.7.1] const-volatile modifications: template <class T> struct remove_const; template <class T> struct remove_volatile; template <class T> struct remove_cv; template <class T> struct add_const; template <class T> struct add_volatile; template <class T> struct add_cv; // [4.7.2] reference modifications: template <class T> struct remove_reference; template <class T> struct add_reference; // [4.7.3] array modifications: template <class T> struct remove_extent; template <class T> struct remove_all_extents; // [4.7.4] pointer modifications: template <class T> struct remove_pointer; template <class T> struct add_pointer; // [4.8] other transformations: template <std::size_t Len, std::size_t Align> struct aligned_storage; } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_TYPE_TRAITS if your standard library implements this part of TR1.
Standard Conformity: No known problems.
#include <boost/tr1/random.hpp>
or
#include <random>
The random number library is divided into three parts: generators, which are nullary functors producing uniform random number distributions. Distributions, which are unary functors that adapt a generator to some specific kind of distribution. And the class template variate_generator which combines a generator with a distribution, to create a new generator. For more information see the Boost.Random documentation.
namespace std { namespace tr1 { // [5.1.3] Class template variate_generator template<class UniformRandomNumberGenerator, class Distribution> class variate_generator; // [5.1.4.1] Class template linear_congruential template<class IntType, IntType a, IntType c, IntType m> class linear_congruential; // [5.1.4.2] Class template mersenne_twister template<class UIntType, int w, int n, int m, int r, UIntType a, int u, int s, UIntType b, int t, UIntType c, int l> class mersenne_twister; // [5.1.4.3] Class template substract_with_carry template<class IntType, IntType m, int s, int r> class subtract_with_carry; // [5.1.4.4] Class template substract_with_carry_01 template<class RealType, int w, int s, int r> class subtract_with_carry_01; // [5.1.4.5] Class template discard_block template<class UniformRandomNumberGenerator, int p, int r> class discard_block; // [5.1.4.6] Class template xor_combine template<class UniformRandomNumberGenerator1, int s1, class UniformRandomNumberGenerator2, int s2> class xor_combine; // [5.1.5] Predefined generators typedef linear_congruential< implementation-defined , 16807, 0, 2147483647> minstd_rand0; typedef linear_congruential< implementation-defined , 48271, 0, 2147483647> minstd_rand; typedef mersenne_twister< implementation-defined , 32, 624, 397, 31, 0x9908b0df, 11, 7, 0x9d2c5680, 15, 0xefc60000, 18> mt19937; typedef subtract_with_carry_01< float, 24, 10, 24> ranlux_base_01; typedef subtract_with_carry_01< double, 48, 10, 24> ranlux64_base_01; typedef discard_block< subtract_with_carry< implementation-defined , (1<<24), 10, 24>, 223, 24> ranlux3; typedef discard_block< subtract_with_carry< implementation-defined, (1<<24), 10, 24>, 389, 24> ranlux4; typedef discard_block< subtract_with_carry_01< float, 24, 10, 24>, 223, 24> ranlux3_01; typedef discard_block< subtract_with_carry_01< float, 24, 10, 24>, 389, 24> ranlux4_01; // [5.1.6] Class random_device class random_device; // [5.1.7.1] Class template uniform_int template<class IntType = int> class uniform_int; // [5.1.7.2] Class bernoulli_distribution class bernoulli_distribution; // [5.1.7.3] Class template geometric_distribution template<class IntType = int, class RealType = double> class geometric_distribution; // [5.1.7.4] Class template poisson_distribution template<class IntType = int, class RealType = double> class poisson_distribution; // [5.1.7.5] Class template binomial_distribution template<class IntType = int, class RealType = double> class binomial_distribution; // [5.1.7.6] Class template uniform_real template<class RealType = double> class uniform_real; // [5.1.7.7] Class template exponential_distribution template<class RealType = double> class exponential_distribution; // [5.1.7.8] Class template normal_distribution template<class RealType = double> class normal_distribution; // [5.1.7.9] Class template gamma_distribution template<class RealType = double> class gamma_distribution; } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_RANDOM if your standard library implements this part of TR1.
Standard Conformity: The Boost implementation has the following limitations:
Note also that most of the Random number generators have been re-implemented as thin wrappers around the Boost versions in order to provide a standard conforming interface (the Boost versions all take an additional, redundant, template parameter, and are initialized by iterators rather than functors).
#include <boost/tr1/tuple.hpp>
or
#include <tuple>
A tuple is a fixed size collection of elements. Pairs, triples, quadruples etc. are tuples. In a programming language, a tuple is a data object containing other objects as elements. These element objects may be of different types. Tuples are convenient in many circumstances. For instance, tuples make it easy to define functions that return more than one value. Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs. Unfortunately C++ does not. To compensate for this "deficiency", the TR1 Tuple Library implements a tuple construct using templates. For more information see the Boost Tuple Library Documentation.
namespace std { namespace tr1 { // [6.1.3] Class template tuple template <class T1 = unspecified , class T2 = unspecified , ..., class TM = unspecified > class tuple; // [6.1.3.2] Tuple creation functions const unspecified ignore; template<class T1, class T2, ..., class TN> tuple<V1, V2, ..., VN> make_tuple(const T1&, const T2& , ..., const TN&); // [6.1] Tuple types Containers template<class T1, class T2, ..., class TN> tuple<T1&, T2&, ..., TN&> tie(T1&, T2& , ..., TN&); // [6.1.3.3] Tuple helper classes template <class T> class tuple_size; template <int I, class T> class tuple_element; // [6.1.3.4] Element access template <int I, class T1, class T2, ..., class TN> RI get(tuple<T1, T2, ..., TN>&); template <int I, class T1, class T2, ..., class TN> PI get(const tuple<T1, T2, ..., TN>&); // [6.1.3.5] relational operators template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM> bool operator==(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&); template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM> bool operator<(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&); template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM> bool operator!=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&); template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM> bool operator>(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&); template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM> bool operator<=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&); template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM> bool operator>=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&); } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_TUPLE if your standard library implements this part of TR1.
Standard Conformity: No known issues for conforming compilers.
#include <boost/tr1/utility.hpp>
or
#include <utility>
The existing class template std::pair, can also be accessed using the tuple interface.
namespace std { namespace tr1 { template <class T> class tuple_size; // forward declaration template <int I, class T> class tuple_element; // forward declaration template <class T1, class T2> struct tuple_size<std::pair<T1, T2> >; template <class T1, class T2> struct tuple_element<0, std::pair<T2, T2> >; template <class T1, class T2> struct tuple_element<1, std::pair<T2, T2> >; // see below for definition of "P". template<int I, class T1, class T2> P& get(std::pair<T1, T2>&); template<int I, class T1, class T2> const P& get(const std::pair<T1, T2>&); } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_UTILITY if your standard library implements this part of TR1.
Standard Conformity: No known problems.
#include <boost/tr1/array.hpp>
or
#include <array>
Class template array is a fixed size array that is safer than and no less efficient than a C style array. Class array fulfils almost all of the requirements of a reversible-container (see Section 23.1, [lib.container.requirements] of the C++ Standard). For more information refer to the Boost.Array documentation.
namespace std { namespace tr1 { // [6.2.2] Class template array template <class T, size_t N > struct array; // Array comparisons template <class T, size_t N> bool operator== (const array<T,N>& x, const array<T,N>& y); template <class T, size_t N> bool operator< (const array<T,N>& x, const array<T,N>& y); template <class T, size_t N> bool operator!= (const array<T,N>& x, const array<T,N>& y); template <class T, size_t N> bool operator> (const array<T,N>& x, const array<T,N>& y); template <class T, size_t N> bool operator>= (const array<T,N>& x, const array<T,N>& y); template <class T, size_t N> bool operator<= (const array<T,N>& x, const array<T,N>& y); // [6.2.2.2] Specialized algorithms template <class T, size_t N > void swap(array<T,N>& x, array<T,N>& y); // [6.2.2.5] Tuple interface to class template array template <class T> class tuple_size; // forward declaration template <int I, class T> class tuple_element; // forward declaration template <class T, size_t N> struct tuple_size<array<T, N> >; template <int I, class T, size_t N> struct tuple_element<I, array<T, N> >; template <int I, class T, size_t N> T& get( array<T, N>&); template <int I, class T, size_t N> const T& get(const array<T, N>&); } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_ARRAY if your standard library implements this part of TR1.
Standard Conformity: No known issues as of Boost-1.34 onwards.
#include <boost/tr1/functional.hpp>
or
#include <functional>
Class template std::hash is a unary-functor that converts some type T into a hash-value, specializations of std::hash are provided for integer, character, floating point, and pointer types, plus the two string types std::string and std::wstring. See the Boost.Hash documentation for more information.
namespace std { namespace tr1 { template <class T> struct hash : public unary_function<T, size_t> { size_t operator()(T val)const; }; // Hash function specializations template <> struct hash<bool>; template <> struct hash<char>; template <> struct hash<signed char>; template <> struct hash<unsigned char>; template <> struct hash<wchar_t>; template <> struct hash<short>; template <> struct hash<int>; template <> struct hash<long>; template <> struct hash<unsigned short>; template <> struct hash<unsigned int>; template <> struct hash<unsigned long>; template <> struct hash<float>; template <> struct hash<double>; template <> struct hash<long double>; template<class T> struct hash<T*>; template <> struct hash<std::string>; template <> struct hash<std::wstring>; } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_HASH if your standard library implements this part of TR1.
Standard Conformity: Boost.Hash adds specialisations of std::hash for a wider range of types than those required by TR1: Boost.Hash acts as a testbed for issue 6.18 in the Library Extension Technical Report Issues List.
Note | |
---|---|
There are portability issues with this template - in particular the |
#include <boost/tr1/regex.hpp>
or
#include <regex>
This library provides comprehensive support for regular expressions, including either iterator or string based matching, searching, search-and-replace, iteration, and tokenization. Both POSIX and ECMAScript (JavaScript) regular expressions are supported. For more information see the Boost.Regex documentation.
namespace std { namespace tr1 { // [7.5] Regex constants namespace regex_constants { typedef bitmask_type syntax_option_type; typedef bitmask_type match_flag_type; typedef implementation-defined error_type; } // namespace regex_constants // [7.6] Class regex_error class regex_error; // [7.7] Class template regex_traits template <class charT> struct regex_traits; // [7.8] Class template basic_regex template <class charT, class traits = regex_traits<charT> > class basic_regex; typedef basic_regex<char> regex; typedef basic_regex<wchar_t> wregex; // [7.8.6] basic_regex swap template <class charT, class traits> void swap(basic_regex<charT, traits>& e1, basic_regex<charT, traits>& e2); // [7.9] Class template sub_match template <class BidirectionalIterator> class sub_match; typedef sub_match<const char*> csub_match; typedef sub_match<const wchar_t*> wcsub_match; typedef sub_match<string::const_iterator> ssub_match; typedef sub_match<wstring::const_iterator> wssub_match; // [7.9.2] sub_match non-member operators /* Comparison operators omitted for clarity.... */ template <class charT, class ST, class BiIter> basic_ostream<charT, ST>& operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m); // [7.10] Class template match_results template <class BidirectionalIterator, class Allocator = allocator<sub_match<BidirectionalIterator> > > class match_results; typedef match_results<const char*> cmatch; typedef match_results<const wchar_t*> wcmatch; typedef match_results<string::const_iterator> smatch; typedef match_results<wstring::const_iterator> wsmatch; // match_results comparisons template <class BidirectionalIterator, class Allocator> bool operator== (const match_results<BidirectionalIterator, Allocator>& m1, const match_results<BidirectionalIterator, Allocator>& m2); template <class BidirectionalIterator, class Allocator> bool operator!= (const match_results<BidirectionalIterator, Allocator>& m1, const match_results<BidirectionalIterator, Allocator>& m2); // [7.10.6] match_results swap template <class BidirectionalIterator, class Allocator> void swap(match_results<BidirectionalIterator, Allocator>& m1, match_results<BidirectionalIterator, Allocator>& m2); // [7.11.2] Function template regex_match template <class BidirectionalIterator, class Allocator, class charT, class traits> bool regex_match(BidirectionalIterator first, BidirectionalIterator last, match_results<BidirectionalIterator, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class BidirectionalIterator, class charT, class traits> bool regex_match(BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class charT, class Allocator, class traits> bool regex_match(const charT* str, match_results<const charT*, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class ST, class SA, class Allocator, class charT, class traits> bool regex_match(const basic_string<charT, ST, SA>& s, match_results<typename basic_string<charT, ST, SA>::const_iterator,Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class charT, class traits> bool regex_match(const charT* str, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class ST, class SA, class charT, class traits> bool regex_match(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); // [7.11.3] Function template regex_search template <class BidirectionalIterator, class Allocator, class charT, class traits> bool regex_search(BidirectionalIterator first, BidirectionalIterator last, match_results<BidirectionalIterator, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class BidirectionalIterator, class charT, class traits> bool regex_search(BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class charT, class Allocator, class traits> bool regex_search(const charT* str, match_results<const charT*, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class charT, class traits> bool regex_search(const charT* str, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class ST, class SA, class charT, class traits> bool regex_search(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); template <class ST, class SA, class Allocator, class charT, class traits> bool regex_search(const basic_string<charT, ST, SA>& s, match_results<typename basic_string<charT, ST, SA>::const_iterator, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default); // [7.11.4] Function template regex_replace template <class OutputIterator, class BidirectionalIterator, class traits, class charT> OutputIterator regex_replace(OutputIterator out, BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, const basic_string<charT>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template <class traits, class charT> basic_string<charT> regex_replace(const basic_string<charT>& s, const basic_regex<charT, traits>& e, const basic_string<charT>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); // [7.12.1] Class template regex_iterator template <class BidirectionalIterator, class charT = typename iterator_traits<BidirectionalIterator>::value_type, class traits = regex_traits<charT> > class regex_iterator; typedef regex_iterator<const char*> cregex_iterator; typedef regex_iterator<const wchar_t*> wcregex_iterator; typedef regex_iterator<string::const_iterator> sregex_iterator; typedef regex_iterator<wstring::const_iterator> wsregex_iterator; // [7.12.2] Class template regex_token_iterator template <class BidirectionalIterator, class charT = typename iterator_traits<BidirectionalIterator>::value_type, class traits = regex_traits<charT> > class regex_token_iterator; typedef regex_token_iterator<const char*> cregex_token_iterator; typedef regex_token_iterator<const wchar_t*> wcregex_token_iterator; typedef regex_token_iterator<string::const_iterator> sregex_token_iterator; typedef regex_token_iterator<wstring::const_iterator> wsregex_token_iterator; } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_REGEX if your standard library implements this part of TR1.
Standard Conformity: No known problems.
#include <boost/tr1/complex.hpp>
or
#include <complex>
The following function templates have additional overloads: arg
, norm
,
conj
, polar
,
imag
, and real
.
The additional overloads are sufficient to ensure:
long
double
, then the overload behaves
as if the argument had been cast to std::complex<long double>
.
double
or is an integer type, then the overload behaves as if the argument had
been cast to std::complex<double>
.
float
,
then the overload behaves as if the argument had been cast to std::complex<float>
.
The function template pow
has additional overloads sufficient to ensure, for a call with at least one
argument of type std::complex<T>
:
complex<long double>
or type long double
,
then the overload behaves as if both arguments were cast to std::complex<long double>
complex<double>
, double
,
or an integer type, then the overload behaves as if both arguments were
cast to std::complex<double>
complex<float>
or float
,
then the overload behaves as if both arguments were cast to std::complex<float>
In the following synopsis, Real
is a floating point type, Arithmetic
is an integer or floating point type, and PROMOTE(X1 ...
XN)
is the largest floating point type in the list X1 to XN, after any non-floating
point types in the list have been replaced by the type double
.
template <class Arithmetic> PROMOTE(Arithmetic) arg(const Arithmetic& t); template <class Arithmetic> PROMOTE(Arithmetic) norm(const Arithmetic& t); template <class Arithmetic> complex<PROMOTE(Arithmetic)> conj(const Arithmetic& t); template <class Arithmetic1, class Arithmetic2> complex<PROMOTE(Arithmetic1,Arithmetic2)> polar(const Arithmetic1& rho, const Arithmetic2& theta = 0); template <class Arithmetic> PROMOTE(Arithmetic) imag(const Arithmetic& ); template <class Arithmetic> PROMOTE(Arithmetic) real(const Arithmetic& t); template<class Real1, class Real2> complex<PROMOTE(Real1, Real2)> pow(const complex<Real1>& x, const complex<Real2>& y); template<class Real, class Arithmetic> complex<PROMOTE(Real, Arithmetic)> pow (const complex<Real>& x, const Arithmetic& y); template<class Arithmetic, class Real> complex<PROMOTE(Real, Arithmetic)> pow (const Arithmetic& x, const complex<Real>& y);
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_COMPLEX_OVERLOADS if your standard library implements the additional overloads for the existing complex arithmetic functions.
Standard Conformity: No known problems.
#include <boost/tr1/complex.hpp>
or
#include <complex>
The algorithms acos
, asin
, atan
,
acosh
, asinh
,
atanh
and fabs
are overloaded for arguments of type std::complex<T>
.
These algorithms are entirely classical, and behave as specified in the C99
standard section 7.3.5. See the Boost.Math
documentation for more information.
namespace std { namespace tr1 { template<class T> complex<T> acos(complex<T>& x); template<class T> complex<T> asin(complex<T>& x); template<class T> complex<T> atan(complex<T>& x); template<class T> complex<T> acosh(complex<T>& x); template<class T> complex<T> asinh(complex<T>& x); template<class T> complex<T> atanh(complex<T>& x); template<class T> complex<T> fabs(complex<T>& x); } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_COMPLEX_INVERSE_TRIG if your standard library implements the additional inverse trig functions.
Standard Conformity: No known problems.
#include <boost/tr1/unordered_set.hpp>
or
#include <unordered_set>
For accessing data based on key lookup, the C++ standard library offers std::set, std::map, std::multiset and std::multimap. These are generally implemented using balanced binary trees so that lookup time has logarithmic complexity. That is generally okay, but in many cases a hash table can perform better, as accessing data has constant complexity, on average. The worst case complexity is linear, but that occurs rarely and with some care, can be avoided.
With this in mind, the C++ Standard Library Technical Report introduced the unordered associative containers, which are implemented using hash tables, and they have now been added to the Working Draft of the C++ Standard.
Refer to the Unordered Library docs for more information.
namespace std { namespace tr1 { template <class Value, class Hash = hash<Value>, class Pred = std::equal_to<Value>, class Alloc = std::allocator<Value> > class unordered_set; // [6.3.4.5] Class template unordered_multiset template <class Value, class Hash = hash<Value>, class Pred = std::equal_to<Value>, class Alloc = std::allocator<Value> > class unordered_multiset; template <class Value, class Hash, class Pred, class Alloc> void swap(unordered_set<Value, Hash, Pred, Alloc>& x, unordered_set<Value, Hash, Pred, Alloc>& y); template <class Value, class Hash, class Pred, class Alloc> void swap(unordered_multiset<Value, Hash, Pred, Alloc>& x, unordered_multiset<Value, Hash, Pred, Alloc>& y); } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_UNORDERED_SET if your standard library implements this part of TR1.
Standard Conformity: No known issues for conforming compilers.
#include <boost/tr1/unordered_map.hpp>
or
#include <unordered_map>
For accessing data based on key lookup, the C++ standard library offers std::set, std::map, std::multiset and std::multimap. These are generally implemented using balanced binary trees so that lookup time has logarithmic complexity. That is generally okay, but in many cases a hash table can perform better, as accessing data has constant complexity, on average. The worst case complexity is linear, but that occurs rarely and with some care, can be avoided.
With this in mind, the C++ Standard Library Technical Report introduced the unordered associative containers, which are implemented using hash tables, and they have now been added to the Working Draft of the C++ Standard.
Refer to the Unordered Library docs for more information.
namespace std { namespace tr1 { // [6.3.4.4] Class template unordered_map template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T> > > class unordered_map; // [6.3.4.6] Class template unordered_multimap template <class Key, class T, class Hash = hash<Key>, class Pred = std::equal_to<Key>, class Alloc = std::allocator<std::pair<const Key, T> > > class unordered_multimap; template <class Key, class T, class Hash, class Pred, class Alloc> void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x, unordered_map<Key, T, Hash, Pred, Alloc>& y); template <class Key, class T, class Hash, class Pred, class Alloc> void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x, unordered_multimap<Key, T, Hash, Pred, Alloc>& y); } // namespace tr1 } // namespace std
Configuration: Boost.Config should (automatically) define the macro BOOST_HAS_TR1_UNORDERED_MAP if your standard library implements this part of TR1.
Standard Conformity: No known issues for conforming compilers.
The TR adds 23 special functions (plus float and long double overloads) to header <cmath>.
Refer to the Math Library docs for more information.
namespace std { namespace tr1 { // [5.2.1.1] associated Laguerre polynomials: double assoc_laguerre(unsigned n, unsigned m, double x); float assoc_laguerref(unsigned n, unsigned m, float x); long double assoc_laguerrel(unsigned n, unsigned m, long double x); // [5.2.1.2] associated Legendre functions: double assoc_legendre(unsigned l, unsigned m, double x); float assoc_legendref(unsigned l, unsigned m, float x); long double assoc_legendrel(unsigned l, unsigned m, long double x); // [5.2.1.3] beta function: double beta(double x, double y); float betaf(float x, float y); long double betal(long double x, long double y); // [5.2.1.4] (complete) elliptic integral of the first kind: double comp_ellint_1(double k); float comp_ellint_1f(float k); long double comp_ellint_1l(long double k); // [5.2.1.5] (complete) elliptic integral of the second kind: double comp_ellint_2(double k); float comp_ellint_2f(float k); long double comp_ellint_2l(long double k); // [5.2.1.6] (complete) elliptic integral of the third kind: double comp_ellint_3(double k, double nu); float comp_ellint_3f(float k, float nu); long double comp_ellint_3l(long double k, long double nu); // [5.2.1.7] confluent hypergeometric functions: double conf_hyperg(double a, double c, double x); float conf_hypergf(float a, float c, float x); long double conf_hypergl(long double a, long double c, long double x); // [5.2.1.8] regular modified cylindrical Bessel functions: double cyl_bessel_i(double nu, double x); float cyl_bessel_if(float nu, float x); long double cyl_bessel_il(long double nu, long double x); // [5.2.1.9] cylindrical Bessel functions (of the first kind): double cyl_bessel_j(double nu, double x); float cyl_bessel_jf(float nu, float x); long double cyl_bessel_jl(long double nu, long double x); // [5.2.1.10] irregular modified cylindrical Bessel functions: double cyl_bessel_k(double nu, double x); float cyl_bessel_kf(float nu, float x); long double cyl_bessel_kl(long double nu, long double x); // [5.2.1.11] cylindrical Neumann functions; // cylindrical Bessel functions (of the second kind): double cyl_neumann(double nu, double x); float cyl_neumannf(float nu, float x); long double cyl_neumannl(long double nu, long double x); // [5.2.1.12] (incomplete) elliptic integral of the first kind: double ellint_1(double k, double phi); float ellint_1f(float k, float phi); long double ellint_1l(long double k, long double phi); // [5.2.1.13] (incomplete) elliptic integral of the second kind: double ellint_2(double k, double phi); float ellint_2f(float k, float phi); long double ellint_2l(long double k, long double phi); // [5.2.1.14] (incomplete) elliptic integral of the third kind: double ellint_3(double k, double nu, double phi); float ellint_3f(float k, float nu, float phi); long double ellint_3l(long double k, long double nu, long double phi); // [5.2.1.15] exponential integral: double expint(double x); float expintf(float x); long double expintl(long double x); // [5.2.1.16] Hermite polynomials: double hermite(unsigned n, double x); float hermitef(unsigned n, float x); long double hermitel(unsigned n, long double x); // [5.2.1.17] hypergeometric functions: double hyperg(double a, double b, double c, double x); float hypergf(float a, float b, float c, float x); long double hypergl(long double a, long double b, long double c, long double x); // [5.2.1.18] Laguerre polynomials: double laguerre(unsigned n, double x); float laguerref(unsigned n, float x); long double laguerrel(unsigned n, long double x); // [5.2.1.19] Legendre polynomials: double legendre(unsigned l, double x); float legendref(unsigned l, float x); long double legendrel(unsigned l, long double x); // [5.2.1.20] Riemann zeta function: double riemann_zeta(double); float riemann_zetaf(float); long double riemann_zetal(long double); // [5.2.1.21] spherical Bessel functions (of the first kind): double sph_bessel(unsigned n, double x); float sph_besself(unsigned n, float x); long double sph_bessell(unsigned n, long double x); // [5.2.1.22] spherical associated Legendre functions: double sph_legendre(unsigned l, unsigned m, double theta); float sph_legendref(unsigned l, unsigned m, float theta); long double sph_legendrel(unsigned l, unsigned m, long double theta); // [5.2.1.23] spherical Neumann functions; // spherical Bessel functions (of the second kind): double sph_neumann(unsigned n, double x); float sph_neumannf(unsigned n, float x); long double sph_neumannl(unsigned n, long double x); } // namespace tr1 } // namespace std
Standard Conformity: The following functions are not supported in the Boost version of this component:
// [5.2.1.7] confluent hypergeometric functions: double conf_hyperg(double a, double c, double x); float conf_hypergf(float a, float c, float x); long double conf_hypergl(long double a, long double c, long double x); // [5.2.1.17] hypergeometric functions: double hyperg(double a, double b, double c, double x); float hypergf(float a, float b, float c, float x); long double hypergl(long double a, long double b, long double c, long double x);
The TR adds a number of special functions which were first introduced in the C99 standard to header <cmath>.
Refer to the Math Library docs for more information.
namespace std { namespace tr1 { // types typedef floating-type double_t; typedef floating-type float_t; // functions double acosh(double x); float acoshf(float x); long double acoshl(long double x); double asinh(double x); float asinhf(float x); long double asinhl(long double x); double atanh(double x); float atanhf(float x); long double atanhl(long double x); double cbrt(double x); float cbrtf(float x); long double cbrtl(long double x); double copysign(double x, double y); float copysignf(float x, float y); long double copysignl(long double x, long double y); double erf(double x); float erff(float x); long double erfl(long double x); double erfc(double x); float erfcf(float x); long double erfcl(long double x); double exp2(double x); float exp2f(float x); long double exp2l(long double x); double expm1(double x); float expm1f(float x); long double expm1l(long double x); double fdim(double x, double y); float fdimf(float x, float y); long double fdiml(long double x, long double y); double fma(double x, double y, double z); float fmaf(float x, float y, float z); long double fmal(long double x, long double y, long double z); double fmax(double x, double y); float fmaxf(float x, float y); long double fmaxl(long double x, long double y); double fmin(double x, double y); float fminf(float x, float y); long double fminl(long double x, long double y); double hypot(double x, double y); float hypotf(float x, float y); long double hypotl(long double x, long double y); int ilogb(double x); int ilogbf(float x); int ilogbl(long double x); double lgamma(double x); float lgammaf(float x); long double lgammal(long double x); long long llrint(double x); long long llrintf(float x); long long llrintl(long double x); long long llround(double x); long long llroundf(float x); long long llroundl(long double x); double log1p(double x); float log1pf(float x); long double log1pl(long double x); double log2(double x); float log2f(float x); long double log2l(long double x); double logb(double x); float logbf(float x); long double logbl(long double x); long lrint(double x); long lrintf(float x); long lrintl(long double x); long lround(double x); long lroundf(float x); long lroundl(long double x); double nan(const char *str); float nanf(const char *str); long double nanl(const char *str); double nearbyint(double x); float nearbyintf(float x); long double nearbyintl(long double x); double nextafter(double x, double y); float nextafterf(float x, float y); long double nextafterl(long double x, long double y); double nexttoward(double x, long double y); float nexttowardf(float x, long double y); long double nexttowardl(long double x, long double y); double remainder(double x, double y); float remainderf(float x, float y); long double remainderl(long double x, long double y); double remquo(double x, double y, int *pquo); float remquof(float x, float y, int *pquo); long double remquol(long double x, long double y, int *pquo); double rint(double x); float rintf(float x); long double rintl(long double x); double round(double x); float roundf(float x); long double roundl(long double x); double scalbln(double x, long ex); float scalblnf(float x, long ex); long double scalblnl(long double x, long ex); double scalbn(double x, int ex); float scalbnf(float x, int ex); long double scalbnl(long double x, int ex); double tgamma(double x); float tgammaf(float x); long double tgammal(long double x); double trunc(double x); float truncf(float x); long double truncl(long double x); // C99 macros defined as C++ templates template<class T> bool signbit(T x); template<class T> int fpclassify(T x); template<class T> bool isfinite(T x); template<class T> bool isinf(T x); template<class T> bool isnan(T x); template<class T> bool isnormal(T x); template<class T> bool isgreater(T x, T y); template<class T> bool isgreaterequal(T x, T y); template<class T> bool isless(T x, T y); template<class T> bool islessequal(T x, T y); template<class T> bool islessgreater(T x, T y); template<class T> bool isunordered(T x, T y); }} // namespaces
Standard Conformity: The following functions are not supported in the Boost version of this component:
double exp2(double x); float exp2f(float x); long double exp2l(long double x); double fdim(double x, double y); float fdimf(float x, float y); long double fdiml(long double x, long double y); double fma(double x, double y, double z); float fmaf(float x, float y, float z); long double fmal(long double x, long double y, long double z); int ilogb(double x); int ilogbf(float x); int ilogbl(long double x); long long llrint(double x); long long llrintf(float x); long long llrintl(long double x); double log2(double x); float log2f(float x); long double log2l(long double x); double logb(double x); float logbf(float x); long double logbl(long double x); long lrint(double x); long lrintf(float x); long lrintl(long double x); double nan(const char *str); float nanf(const char *str); long double nanl(const char *str); double nearbyint(double x); float nearbyintf(float x); long double nearbyintl(long double x); double remainder(double x, double y); float remainderf(float x, float y); long double remainderl(long double x, long double y); double remquo(double x, double y, int *pquo); float remquof(float x, float y, int *pquo); long double remquol(long double x, long double y, int *pquo); double rint(double x); float rintf(float x); long double rintl(long double x); double scalbln(double x, long ex); float scalblnf(float x, long ex); long double scalblnl(long double x, long ex); double scalbn(double x, int ex); float scalbnf(float x, int ex); long double scalbnl(long double x, int ex); // C99 macros defined as C++ templates template<class T> bool isgreater(T x, T y); template<class T> bool isgreaterequal(T x, T y); template<class T> bool isless(T x, T y); template<class T> bool islessequal(T x, T y); template<class T> bool islessgreater(T x, T y); template<class T> bool isunordered(T x, T y);