Boost C++ Libraries Home Libraries People FAQ More

PrevUpHomeNext

Reference

C++0x Recommendation
Ratio I/O
Rational Constant

This header includes all the ratio related header files

#include <boost/ratio/ratio.hpp>
#include <boost/ratio/ratio_io.hpp>
#include <boost/ratio/rational_constant.hpp>

This header provides forward declarations for the <boost/ratio/ratio.hpp> file.

namespace boost  {

    template <boost::intmax_t N, boost::intmax_t D = 1> class ratio;

    // ratio arithmetic
    template <class R1, class R2> struct ratio_add;
    template <class R1, class R2> struct ratio_subtract;
    template <class R1, class R2> struct ratio_multiply;
    template <class R1, class R2> struct ratio_divide;
    template <class R> struct ratio_negate;
    template <class R> struct ratio_sign;
    template <class R> struct ratio_abs;
    template <class R1, class R2> struct ratio_gcd;
    template <class R1, class R2> struct ratio_lcm;

    // ratio comparison
    template <class R1, class R2> struct ratio_equal;
    template <class R1, class R2> struct ratio_not_equal;
    template <class R1, class R2> struct ratio_less;
    template <class R1, class R2> struct ratio_less_equal;
    template <class R1, class R2> struct ratio_greater;
    template <class R1, class R2> struct ratio_greater_equal;

    // convenience SI typedefs
    typedef ratio<1LL, 1000000000000000000LL> atto;
    typedef ratio<1LL,    1000000000000000LL> femto;
    typedef ratio<1LL,       1000000000000LL> pico;
    typedef ratio<1LL,          1000000000LL> nano;
    typedef ratio<1LL,             1000000LL> micro;
    typedef ratio<1LL,                1000LL> milli;
    typedef ratio<1LL,                 100LL> centi;
    typedef ratio<1LL,                  10LL> deci;
    typedef ratio<                 10LL, 1LL> deca;
    typedef ratio<                100LL, 1LL> hecto;
    typedef ratio<               1000LL, 1LL> kilo;
    typedef ratio<            1000000LL, 1LL> mega;
    typedef ratio<         1000000000LL, 1LL> giga;
    typedef ratio<      1000000000000LL, 1LL> tera;
    typedef ratio<   1000000000000000LL, 1LL> peta;
    typedef ratio<1000000000000000000LL, 1LL> exa;
}

ratio is a facility which is useful in specifying compile-time rational constants. Compile-time rational arithmetic is supported with protection against overflow and divide by zero. Such a facility is very handy to efficiently represent 1/3 of a nanosecond, or to specify an inch in terms of meters (for example 254/10000 meters - which ratio will reduce to 127/5000 meters).

// Configuration macros
#define BOOST_RATIO_USES_STATIC_ASSERT
#define BOOST_RATIO_USES_MPL_ASSERT
#define BOOST_RATIO_USES_ARRAY_ASSERT
#define BOOST_RATIO_EXTENSIONS

When BOOST_NO_STATIC_ASSERT is defined, the user can select the way static assertions are reported. Define

  • BOOST_RATIO_USES_STATIC_ASSERT to use Boost.StaticAssert.
  • BOOST_RATIO_USES_MPL_ASSERT to use Boost.MPL static assertions.
  • BOOST_RATIO_USES_RATIO_ASSERT to use Boost.Ratio static assertions.

The default behavior is as if BOOST_RATIO_USES_ARRAY_ASSERT is defined.

When BOOST_RATIO_USES_MPL_ASSERT is not defined the following symbols are defined as shown:

#define BOOST_RATIO_OVERFLOW_IN_ADD "overflow in ratio add"
#define BOOST_RATIO_OVERFLOW_IN_SUB "overflow in ratio sub"
#define BOOST_RATIO_OVERFLOW_IN_MUL "overflow in ratio mul"
#define BOOST_RATIO_OVERFLOW_IN_DIV "overflow in ratio div"
#define BOOST_RATIO_NUMERATOR_IS_OUT_OF_RANGE "ratio numerator is out of range"
#define BOOST_RATIO_DIVIDE_BY_0 "ratio divide by 0"
#define BOOST_RATIO_DENOMINATOR_IS_OUT_OF_RANGE "ratio denominator is out of range"

Depending upon the static assertion system used, a hint as to the failing assertion will appear in some form in the compiler diagnostic output.

When BOOST_RATIO_EXTENSIONS is defined, Boost.Ratio provides in addition some extenion to the C++ standard, see below.

template <boost::intmax_t N, boost::intmax_t D>
class ratio {
public:
    static const boost::intmax_t num;
    static const boost::intmax_t den;
    typedef ratio<num, den> type;

    #ifdef BOOST_RATIO_EXTENSIONS
    typedef mpl::rational_c_tag tag;
    typedef boost::rational<boost::intmax_t> value_type;
    typedef boost::intmax_t num_type;
    typedef boost::intmax_t den_type;

    ratio() = default;

    template <intmax_t _N2, intmax_t _D2>
    ratio(const ratio<_N2, _D2>&);

    template <intmax_t _N2, intmax_t _D2>
    ratio& operator=(const ratio<_N2, _D2>&);

    static value_type value();
    value_type operator()() const;
    #endif
};

A diagnostic will be emitted if ratio is instantiated with D == 0, or if the absolute value of N or D cannot be represented. Note: These rules ensure that infinite ratios are avoided and that for any negative input, there exists a representable value of its absolute value which is positive. In a two's complement representation, this excludes the most negative value.

The members num and den will be normalized values of the template arguments N and D computed as follows. Let gcd denote the greatest common divisor of N's absolute value and of D's absolute value. Then:

  • num has the value sign(N)*sign(D)*abs(N)/gcd.
  • den has the value abs(D)/gcd.

The nested typedef type denotes the normalized form of this ratio type. It should be used when the normalized form of the template arguments are required, since the arguments are not necessarily normalized.

Two ratio classes ratio<N1,D1> and ratio<N2,D2> have the same normalized form if ratio<N1,D1>::type is the same type as ratio<N2,D2>::type

Included only if BOOST_RATIO_EXTENSIONS is defined.

Default Constructor
ratio()=default;

Effects: Constructs a ratio object.

Copy Constructor
template <intmax_t N2, intmax_t D2>
  ratio(const ratio<N2, D2>& r);

Effects: Constructs a ratio object.

Remarks: This constructor will not participate in overload resolution unless r has the same normalized form as *this.

Assignement
template <intmax_t N2, intmax_t D2>
  ratio& operator=(const ratio<N2, D2>& r);

Effects: Assigns a ratio object.

Returns: *this.

Remarks: This operator will not participate in overload resolution unless r has the same normalized form as *this.

Included only if BOOST_RATIO_EXTENSIONS is defined.

In order to work with Boost.MPL numeric metafunctions as a Rational Constant, the following has beed added:

typedef mpl::rational_c_tag tag;
typedef boost::rational<boost::intmax_t> value_type;
typedef boost::intmax_t num_type;
typedef boost::intmax_t den_type;

Included only if BOOST_RATIO_EXTENSIONS is defined.

static value_type value();
value_type operator()() const;

Returns: value_type(num,den);

For each of the class templates in this section, each template parameter refers to a ratio. If the implementation is unable to form the indicated ratio due to overflow, a diagnostic will be issued.

ratio_add<>
template <class R1, class R2> struct ratio_add {
   typedef [/see below] type;
};

The nested typedef type is a synonym for ratio<R1::num * R2::den + R2::num * R1::den, R1::den * R2::den>::type.

ratio_subtract<>
template <class R1, class R2> struct ratio_subtract {
   typedef  [/see below]  type;
};

The nested typedef type is a synonym for ratio<R1::num * R2::den - R2::num * R1::den, R1::den * R2::den>::type.

ratio_multiply<>
template <class R1, class R2> struct ratio_multiply {
   typedef  [/see below]  type;
};

The nested typedef type is a synonym for ratio<R1::num * R2::num, R1::den * R2::den>::type.

ratio_divide<>
template <class R1, class R2> struct ratio_divide {
   typedef  [/see below]  type;
};

The nested typedef type is a synonym for ratio<R1::num * R2::den, R2::num * R1::den>::type.

ratio_negate<>

This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.

template <class R> struct ratio_negate {
   typedef  [/see below]  type;
};

The nested typedef type is a synonym for ratio<-R::num, R::den>::type.

ratio_abs<>

This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.

template <class R> struct ratio_abs {
   typedef  [/see below]  type;
};

The nested typedef type is a synonym for ratio<abs_c<intmax_t,R::num>::value, R::den>::type.

ratio_sign<>

This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.

template <class R> struct ratio_sign {
   typedef  [/see below]  type;
};

The nested typedef type is a synonym for sign_c<intmax_t,R::num>::type.

ratio_gcd<>

This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.

template <class R1, class R2> struct ratio_gcd {
   typedef  [/see below]  type;
};

The nested typedef type is a synonym for ratio<gcd_c<intmax_t, R1::num, R2::num>::value, mpl::lcm_c<intmax_t, R1::den, R2::den>::value>::type.

ratio_lcm<>

This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.

template <class R1, class R2> struct ratio_lcm {
   typedef  [/see below]  type;
};

The nested typedef type is a synonym for ratio<lcm_c<intmax_t, R1::num, R2::num>::value, gcd_c<intmax_t, R1::den, R2::den>::value>::type.

ratio_equal<>
template <class R1, class R2>  struct ratio_equal
    : public boost::integral_constant<bool, [/see below] > {};

If R1::num == R2::num && R1::den == R2::den, ratio_equal derives from true_type, else derives from false_type.

ratio_not_equal<>
template <class R1, class R2>  struct ratio_not_equal
    : public boost::integral_constant<bool, !ratio_equal<R1, R2>::value> {};
ratio_less<>
template <class R1, class R2>
struct ratio_less
    : public boost::integral_constant<bool, [/see below] > {};

If R1::num * R2::den < R2::num * R1::den, ratio_less derives from true_type, else derives from false_type.

ratio_less_equal<>
template <class R1, class R2> struct ratio_less_equal
    : public boost::integral_constant<bool, !ratio_less<R2, R1>::value> {};
ratio_greater<>
template <class R1, class R2> struct ratio_greater
    : public boost::integral_constant<bool, ratio_less<R2, R1>::value> {};
ratio_greater_equal<>
template <class R1, class R2> struct ratio_greater_equal
    : public boost::integral_constant<bool, !ratio_less<R1, R2>::value> {};

The International System of Units specifies twenty SI prefixes. Boost.Ratio defines all except yocto, zepto, zetta, and yotta

// convenience SI typedefs
typedef ratio<1LL, 1000000000000000000LL> atto;
typedef ratio<1LL,    1000000000000000LL> femto;
typedef ratio<1LL,       1000000000000LL> pico;
typedef ratio<1LL,          1000000000LL> nano;
typedef ratio<1LL,             1000000LL> micro;
typedef ratio<1LL,                1000LL> milli;
typedef ratio<1LL,                 100LL> centi;
typedef ratio<1LL,                  10LL> deci;
typedef ratio<                 10LL, 1LL> deca;
typedef ratio<                100LL, 1LL> hecto;
typedef ratio<               1000LL, 1LL> kilo;
typedef ratio<            1000000LL, 1LL> mega;
typedef ratio<         1000000000LL, 1LL> giga;
typedef ratio<      1000000000000LL, 1LL> tera;
typedef ratio<   1000000000000000LL, 1LL> peta;
typedef ratio<1000000000000000000LL, 1LL> exa;

The following are limitations of Boost.Ratio relative to the specification in the C++0x draft standard:

  • Four of the SI units typedefs -- yocto, zepto, zetta, and yotta -- are to be conditionally supported, if the range of intmax_t allows, but are not supported by Boost.Ratio.
  • Ratio values should be of type static constexpr intmax_t (see Ratio values should be constexpr), but for compiler not supporting constexpr today, Boost.Ratio uses static const intmax_t instead.
  • Rational arithmetic should use template aliases (see Rational Arithmetic should use template aliases), but those are not available in C++03, so inheritance is used instead.

When BOOST_RATIO_EXTENSIONS is defined Boost.Ratio provides the following extensions:

  • Extends the requirements of the C++0x draft standard by making the copy constructor and copy assignment operator have the same normalized form (see copy constructor and assignment between ratios having the same normalized form).
  • More C++ standard like metafunctions applied to ratio types, like __static_abs or __static_negate.
  • An __Boost_Mpl rational constant concept and the associated __Boost_Mpl arithmetic and comparison specializations including __numeric_cast, __plus, __equal_to between others.

This header provides ratio_string<> which can generate a textual representation of a ratio<> in the form of a std::basic_string<>. These strings can be useful for I/O.

namespace boost {
    template <class Ratio, class CharT>
    struct ratio_string
    {
        static std::basic_string<CharT> short_name();
        static std::basic_string<CharT> long_name();
    };
}
Description

A Rational Constant is a holder class for a compile-time value of a rational type. Every Rational Constant is also a nullary Metafunction, returning itself. A rational constant object is implicitly convertible to the corresponding run-time value of the rational type.

Expression requirements

In the following table and subsequent specifications, r is a model of Rational Constant.

Expression

Type

Complexity

r::tag

rational_c_tag

Constant time

r::value_type

A rational type

Constant time

r::num_type

An integral type

Constant time

r::den_type

An integral type

Constant time

r::num

An Integral constant expression

Constant time

r::den

An Integral constant expression

Constant time

r::type

Rational Constant

Constant time

r::value_type const c=r()

Constant time

Expression semantics

Expression

Semantics

r::tag

r's tag type; r::tag::value is r's conversion rank.

r::value_type

A cv-unqualified type of r()

r::num_type

A cv-unqualified type of r::num

r::den_type

A cv-unqualified type of r::den

r::num

The numerator of the rational constant

r::den

The denominator of the rational constant

r::type

equal_to<n::type,n>::value == true.

r::value_type const c=r()

r::value_type const c=r::value_type(r::num,r::den)

Models

This header includes all the rational constant related header files

#include <boost/ratio/mpl/rational_c_tag.hpp>
#include <boost/ratio/mpl/numeric_cast.hpp>
#include <boost/ratio/mpl/arithmetic.hpp>
#include <boost/ratio/mpl/comparison.hpp>
namespace boost {
namespace mpl {

    struct rational_c_tag : int_<10> {};

}
}
namespace boost {
namespace mpl {

    template<> struct numeric_cast< integral_c_tag,rational_c_tag >;

}
}

A Integral Constant is seen as a ratio with numerator the Integral Constant value and denominator 1.

template<> struct numeric_cast< integral_c_tag,rational_c_tag >
{
    template< typename N > struct apply
        : ratio< N::value, 1 >
    {
    };
};

This header includes all the rational constant arithmetic MPL specializations.

#include <boost/ratio/mpl/plus.hpp>
#include <boost/ratio/mpl/minus.hpp>
#include <boost/ratio/mpl/times.hpp>
#include <boost/ratio/mpl/divides.hpp>
#include <boost/ratio/mpl/negate.hpp>
#include <boost/ratio/mpl/abs.hpp>
#include <boost/ratio/mpl/sign.hpp>
#include <boost/ratio/mpl/gcd.hpp>
#include <boost/ratio/mpl/lcm.hpp>
namespace boost {
namespace mpl {
    template<>
    struct plus_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_add template class.

template<>
struct plus_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_add<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct minus_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_subtract template class.

template<>
struct plus_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_subtract<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct times_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_multiply template class.

template<>
struct times_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_multiply<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct divides_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_divide template class.

template<>
struct divides_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_divide<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct gcd_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_gcd template class.

template<>
struct gcd_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_gcd<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct lcm_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_lcm template class.

template<>
struct lcm_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_lcm<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct negate_impl< rational_c_tag >;
}
}

The specialization relays on the ratio_negate template class.

template<>
struct negate_impl< rational_c_tag >
{
    template< typename R > struct apply
        : ratio_negate<R>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct abs_impl< rational_c_tag >;
}
}

The specialization relays on the ratio_abs template class.

template<>
struct abs_impl< rational_c_tag >
{
    template< typename R > struct apply
        : ratio_abs<R>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct sign_impl< rational_c_tag >;
}
}

The specialization relays on the ratio_sign template class.

template<>
struct sign_impl< rational_c_tag >
{
    template< typename R > struct apply
        : ratio_sign<R>
    {
    };
};

This header includes all the rational constant comparison MPL specializations.

#include <boost/ratio/mpl/equal_to.hpp>
#include <boost/ratio/mpl/not_equal_to.hpp>
#include <boost/ratio/mpl/less.hpp>
#include <boost/ratio/mpl/less_equal.hpp>
#include <boost/ratio/mpl/greater.hpp>
#include <boost/ratio/mpl/greater_equal.hpp>
namespace boost {
namespace mpl {
    template<>
    struct equal_to_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_equal template class.

template<>
struct equal_to_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_equal<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct not_equal_to_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_not_equal template class.

template<>
struct not_equal_to_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_not_equal<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct less_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_less template class.

template<>
struct less_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_less<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct less_equal_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_less_equal template class.

template<>
struct less_equal_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_less_equal<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct greater_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_greater template class.

template<>
struct greater_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_greater<R1, R2>
    {
    };
};
namespace boost {
namespace mpl {
    template<>
    struct greater_equal_impl< rational_c_tag,rational_c_tag >;
}
}

The specialization relays on the ratio_greater_equal template class.

template<>
struct greater_equal_impl< rational_c_tag,rational_c_tag >
{
    template< typename R1, typename R2 > struct apply
        : ratio_greater_equal<R1, R2>
    {
    };
};

PrevUpHomeNext